If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+11r=0
a = 1; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·1·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*1}=\frac{-22}{2} =-11 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*1}=\frac{0}{2} =0 $
| 6x-5=3(2x+4) | | 26=6p+2 | | 40-y=223 | | 1/2(4n+6)-3=-56 | | -3(a+3)+2a=-5 | | -13t=-7 | | -(d-2)=2(3d+6)+4 | | -3(x-3)-5x=9-3x | | 10y=40=2y | | 5u=36-4u | | 13+5z=-12z= | | (6k+12)(4k-7)=0 | | 4x-3+121=180 | | 1/2(4+6j-3=-56 | | x-(-28)=-3 | | 6-6a=-3(a-7) | | 3x-7=2x= | | 15u=8u+56 | | -0.8(-0.5–0.7f)= | | 6x-3=4(x-2) | | 11/x=8/6 | | 20-4(m)=4 | | x-9/2=1/3 | | 7+a=53 | | -(-8+2x)=x+17 | | a/3+2=3 | | 3u=40+5u | | 4.9=6.1-0.3x | | 4x-4x+4=25 | | 7-3r=r-6+4r | | .5n+8=14-n | | 3b2-b=5 |